Use the style guide, including Additonal styles beginning with Assignment D.

In Problem E1 we use an array of pointers to Car and make a copy of the users Car objects in the heap.

In Problem E2 we will use inheritance to provide specizations of the Car class in the child classes FreightCar and PassengerCar.

Then in Problem E3 we will put this all together with a StringOfCars class that can contain Car, FreightCar, or PassengerCar objects, or a mix of these three.

Problem E1

Copy the solution from problem D2 and make the name E1.
Keep the same order for the functions as in problem D2.

1. Car constructors and destructor within the Car class definition

a. default constructor

b. copy constructor

c. other constructors

d. destructor

2. StringOfCars constructors and destructor within the StringOfCar class definition

a. default constructor

b. copy constructor

c. other constructors

d. destructor

3. main

4. Car member functions declared within the Car class but defined later

a. setup

b. output

c. operator=

5. StringOfCars member functions declared within the StringOfCars class but defined later

a. output

b. push

c. pop

6. global functions

a. operator== with Car parameters

b. input

In the StringOfCars class, Change the array of Car objects to an array of pointers to Car objects. To do this you need to change the pointer type from Car * to Car **
Then we will need to make changes to use these pointers. The constructors, destructor, and member functions will have similar operation, but will need changes to work with pointers. I suggest you make the following changes, one at a time.

· All the StringOfCars constructors will get space for Car * elements, rather than Car elements in the array. To allow this the pointer in the private data for the StringOfCars class will be: Car ** ptr;

· All the StringOfCars constructors will set each unused element in the array to zero. This might best be done by setting them all to zero before using the array.

· The output function needs to dereference the pointers to get at the Car objects.

· Change the push function. It will take a parameter that is a Car by constant reference. It will allocate space in the heap for one Car object that is a copy of the Car parameter and then put the pointer to that Car in the array. Then it will increment the carCount.

· The copy constructor will get space for the array of Car* elements and set them to zero. It will set the carCount to zero. Then it will use the push function to push each each Car object into the array.

· The pop function will take a Car parameter by reference. It will copy the Car to the reference parameter. Then it will delete the Car from the heap. It will set the entry in the array that is no longer used to 0. It will decrement the carCount.

· The distructor will need to delete each Car pointed to by the array, and then delete the array.

